Modeling light-driven proton pumps in artificial photosynthetic reaction centers.

نویسندگان

  • Pulak Kumar Ghosh
  • Anatoly Yu Smirnov
  • Franco Nori
چکیده

We study a model of a light-induced proton pump in artificial reaction centers. The model contains a molecular triad with four electron states (i.e., one donor state, two photosensitive group states, and one acceptor state) as well as a molecular shuttle having one electron and one proton-binding sites. The shuttle diffuses between the sides of the membrane and translocates protons energetically uphill: from the negative side to the positive side of the membrane, harnessing for this purpose the energy of the electron-charge separation produced by light. Using the methods of quantum transport theory we calculate the range of light intensity and transmembrane potentials that maximize both the light-induced proton current and the energy transduction efficiency. We also study the effect of temperature on proton pumping. The light-induced proton pump in our model gives a quantum yield of proton translocation of about 55%. Thus, our results explain previous experiments on these artificial photosynthetic reaction centers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mimicking photosynthetic solar energy transduction.

Increased understanding of photosynthetic energy conversion and advances in chemical synthesis and instrumentation have made it possible to create artificial nanoscale devices and semibiological hybrids that carry out many of the functions of the natural process. Artificial light-harvesting antennas can be synthesized and linked to artificial reaction centers that convert excitation energy to c...

متن کامل

Mimicking bacterial photosynthesis

Photosynthesis in bacteria involves absorption of light by antenna chromophores and transfer of excitation to reaction centers, which convert the excitation energy to electrochemical potential energy in the form of transmembrane charge separation. A proton pump uses this stored energy to generate proton motive force across the membrane, which in turn is used to synthesize adenosine triphosphate...

متن کامل

for Fiscal Year 2010 Project Title : Theoretical Modeling of Photosynthesis

1. Background and purpose Recently we have studied a model [1] of lightinduced proton and electron pump in artificial reaction centers. The model contains a molecular triad, which is inserted between two (either proton or electron) reservoirs. The molecular triad transports protons (mediated by a shuttle) and electrons energetically uphill: from the lower energy reservoir to the higher energy r...

متن کامل

Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore.

Homologous to bacteriorhodopsin and even more to proteorhodopsin, xanthorhodopsin is a light-driven proton pump that, in addition to retinal, contains a noncovalently bound carotenoid with a function of a light-harvesting antenna. We determined the structure of this eubacterial membrane protein-carotenoid complex by X-ray diffraction, to 1.9-A resolution. Although it contains 7 transmembrane he...

متن کامل

Photosynthetic models with maximum entropy production in irreversible charge transfer steps

Steady-state bacterial photosynthesis is modelled as cyclic chemical reaction and is examined with respect to overall efficiency, power transfer efficiency, and entropy production. A nonlinear flux-force relationship is assumed. The simplest two-state kinetic model bears complete analogy with the performance of an ideal (zero ohmic resistance of the P-N junction) solar cell. In both cases power...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 131 3  شماره 

صفحات  -

تاریخ انتشار 2009